home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Singles Flirt Up Your Life! (German)
/
Singles Flirt Up Your Life.iso
/
data1.cab
/
CharacterMid
/
elaineFemmeEyes.ams
< prev
next >
Wrap
Text File
|
2004-01-29
|
67KB
|
4,093 lines
Wonderlib::MVFMesh object
{
boneName
{
0 = R Eyeball
1 = L Eyeball
}
boneWeight
{
0
{
0 = 0 1
}
1
{
0 = 0 1
}
2
{
0 = 0 1
}
3
{
0 = 0 1
}
4
{
0 = 0 1
}
5
{
0 = 0 1
}
6
{
0 = 0 1
}
7
{
0 = 0 1
}
8
{
0 = 0 1
}
9
{
0 = 0 1
}
10
{
0 = 0 1
}
11
{
0 = 0 1
}
12
{
0 = 0 1
}
13
{
0 = 0 1
}
14
{
0 = 0 1
}
15
{
0 = 0 1
}
16
{
0 = 0 1
}
17
{
0 = 0 1
}
18
{
0 = 0 1
}
19
{
0 = 0 1
}
20
{
0 = 0 1
}
21
{
0 = 0 1
}
22
{
0 = 0 1
}
23
{
0 = 0 1
}
24
{
0 = 0 1
}
25
{
0 = 0 1
}
26
{
0 = 0 1
}
27
{
0 = 0 1
}
28
{
0 = 0 1
}
29
{
0 = 0 1
}
30
{
0 = 0 1
}
31
{
0 = 0 1
}
32
{
0 = 0 1
}
33
{
0 = 0 1
}
34
{
0 = 0 1
}
35
{
0 = 0 1
}
36
{
0 = 0 1
}
37
{
0 = 0 1
}
38
{
0 = 0 1
}
39
{
0 = 0 1
}
40
{
0 = 0 1
}
41
{
0 = 0 1
}
42
{
0 = 0 1
}
43
{
0 = 0 1
}
44
{
0 = 0 1
}
45
{
0 = 0 1
}
46
{
0 = 0 1
}
47
{
0 = 0 1
}
48
{
0 = 0 1
}
49
{
0 = 0 1
}
50
{
0 = 0 1
}
51
{
0 = 0 1
}
52
{
0 = 0 1
}
53
{
0 = 0 1
}
54
{
0 = 0 1
}
55
{
0 = 0 1
}
56
{
0 = 0 1
}
57
{
0 = 0 1
}
58
{
0 = 0 1
}
59
{
0 = 0 1
}
60
{
0 = 0 1
}
61
{
0 = 0 1
}
62
{
0 = 0 1
}
63
{
0 = 0 1
}
64
{
0 = 0 1
}
65
{
0 = 0 1
}
66
{
0 = 0 1
}
67
{
0 = 0 1
}
68
{
0 = 0 1
}
69
{
0 = 0 1
}
70
{
0 = 0 1
}
71
{
0 = 0 1
}
72
{
0 = 0 1
}
73
{
0 = 0 1
}
74
{
0 = 0 1
}
75
{
0 = 0 1
}
76
{
0 = 0 1
}
77
{
0 = 0 1
}
78
{
0 = 0 1
}
79
{
0 = 0 1
}
80
{
0 = 0 1
}
81
{
0 = 0 1
}
82
{
0 = 0 1
}
83
{
0 = 0 1
}
84
{
0 = 0 1
}
85
{
0 = 0 1
}
86
{
0 = 1 1
}
87
{
0 = 1 1
}
88
{
0 = 1 1
}
89
{
0 = 1 1
}
90
{
0 = 1 1
}
91
{
0 = 1 1
}
92
{
0 = 1 1
}
93
{
0 = 1 1
}
94
{
0 = 1 1
}
95
{
0 = 1 1
}
96
{
0 = 1 1
}
97
{
0 = 1 1
}
98
{
0 = 1 1
}
99
{
0 = 1 1
}
100
{
0 = 1 1
}
101
{
0 = 1 1
}
102
{
0 = 1 1
}
103
{
0 = 1 1
}
104
{
0 = 1 1
}
105
{
0 = 1 1
}
106
{
0 = 1 1
}
107
{
0 = 1 1
}
108
{
0 = 1 1
}
109
{
0 = 1 1
}
110
{
0 = 1 1
}
111
{
0 = 1 1
}
112
{
0 = 1 1
}
113
{
0 = 1 1
}
114
{
0 = 1 1
}
115
{
0 = 1 1
}
116
{
0 = 1 1
}
117
{
0 = 1 1
}
118
{
0 = 1 1
}
119
{
0 = 1 1
}
120
{
0 = 1 1
}
121
{
0 = 1 1
}
122
{
0 = 1 1
}
123
{
0 = 1 1
}
124
{
0 = 1 1
}
125
{
0 = 1 1
}
126
{
0 = 1 1
}
127
{
0 = 1 1
}
128
{
0 = 1 1
}
129
{
0 = 1 1
}
130
{
0 = 1 1
}
131
{
0 = 1 1
}
132
{
0 = 1 1
}
133
{
0 = 1 1
}
134
{
0 = 1 1
}
135
{
0 = 1 1
}
136
{
0 = 1 1
}
137
{
0 = 1 1
}
138
{
0 = 1 1
}
139
{
0 = 1 1
}
140
{
0 = 1 1
}
141
{
0 = 1 1
}
142
{
0 = 1 1
}
143
{
0 = 1 1
}
144
{
0 = 1 1
}
145
{
0 = 1 1
}
146
{
0 = 1 1
}
147
{
0 = 1 1
}
148
{
0 = 1 1
}
149
{
0 = 1 1
}
150
{
0 = 1 1
}
151
{
0 = 1 1
}
152
{
0 = 1 1
}
153
{
0 = 1 1
}
154
{
0 = 1 1
}
155
{
0 = 1 1
}
156
{
0 = 1 1
}
157
{
0 = 1 1
}
158
{
0 = 1 1
}
159
{
0 = 1 1
}
160
{
0 = 1 1
}
161
{
0 = 1 1
}
162
{
0 = 1 1
}
163
{
0 = 1 1
}
164
{
0 = 1 1
}
165
{
0 = 1 1
}
166
{
0 = 1 1
}
167
{
0 = 1 1
}
168
{
0 = 1 1
}
169
{
0 = 1 1
}
170
{
0 = 1 1
}
171
{
0 = 1 1
}
}
material
{
Wonderlib::Material 0
{
ambient = 0 0 0 1
bumpmap =
diffuse = 0 0 0 0.1
dstBlend = 1
name = FemmeEyes_Mike_transfer_eyeLensMat
power = 80
specular = 0 0 0 0.7
srcBlend = 1
texture =
type = 136
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
Wonderlib::Material 1
{
ambient = 0 0 0 1
bumpmap =
diffuse = 1 1 1 1
dstBlend = 5
name = FemmeEyes_IrisMat
power = 80
specular = 0 0 0 0.7
srcBlend = 4
texture = eyeFemme
type = 1
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
Wonderlib::Material 2
{
ambient = 0 0 0 1
bumpmap =
diffuse = 1 1 1 1
dstBlend = 5
name = FemmeEyes_eyeballMat
power = 160
specular = 0 0 0 0.2
srcBlend = 4
texture = eyeFemme
type = 129
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
}
normalVertex
{
0 = -0.130368 0.861546 0.490655
1 = -0.356115 0.861794 0.361238
2 = -0.486472 0.862935 0.136705
3 = -0.48653 0.864985 -0.12284
4 = -0.356263 0.867415 -0.347372
5 = -0.130387 0.869173 -0.477008
6 = 0.130482 0.869182 -0.476966
7 = 0.354711 0.869084 -0.344781
8 = 0.485239 0.865645 -0.123296
9 = 0.486202 0.863111 0.136553
10 = 0.355848 0.862053 0.360883
11 = 0.13012 0.861851 0.490186
12 = -0.11725 0.985381 0.123599
13 = -0.159376 0.985948 0.0500642
14 = -0.159654 0.986583 -0.0341282
15 = -0.117822 0.987124 -0.108183
16 = -0.0435414 0.987395 -0.152167
17 = 0.0435193 0.987356 -0.152426
18 = 0.115547 0.987756 -0.104816
19 = 0.160187 0.98646 -0.0351721
20 = 0.159276 0.985964 0.0500638
21 = 0.117168 0.985396 0.123555
22 = -0.0432196 0.984996 0.167079
23 = 0.0430647 0.985062 0.166728
24 = -1.58852e-005 0.999975 0.00703725
25 = 0.000122291 0.999968 0.00800205
26 = -0.251393 0.253121 0.934201
27 = -0.685041 0.254294 0.682681
28 = -0.933384 0.2569 0.250594
29 = -0.933407 0.260886 -0.246352
30 = -0.683114 0.265365 -0.680394
31 = -0.251257 0.261514 -0.931923
32 = 0.25111 0.260385 -0.932279
33 = 0.683134 0.265163 -0.680453
34 = 0.933409 0.260867 -0.246364
35 = 0.933417 0.256798 0.250573
36 = 0.684957 0.254099 0.682837
37 = 0.251407 0.253139 0.934192
38 = -0.234958 0.425007 0.874165
39 = -0.6403 0.42592 0.639224
40 = -0.506301 0.696775 0.508098
41 = -0.872456 0.428131 0.235637
42 = -0.690379 0.698258 0.189242
43 = -0.872468 0.431844 -0.228716
44 = -0.690361 0.701262 -0.177856
45 = -0.639812 0.435288 -0.633376
46 = -0.506173 0.704933 -0.496848
47 = -0.234834 0.434958 -0.869289
48 = -0.185546 0.707514 -0.681907
49 = 0.235266 0.434024 -0.869639
50 = 0.185648 0.707493 -0.6819
51 = 0.63956 0.43511 -0.633752
52 = 0.50618 0.705055 -0.496668
53 = 0.872481 0.431862 -0.228634
54 = 0.690374 0.701192 -0.178084
55 = 0.872465 0.42812 0.235621
56 = 0.690385 0.698238 0.189294
57 = 0.640215 0.425918 0.639311
58 = 0.506271 0.696907 0.507947
59 = 0.234884 0.424918 0.874228
60 = -0.185675 0.696313 0.693306
61 = 0.185755 0.696344 0.693254
62 = -0.127127 0.869363 0.477542
63 = -0.346901 0.869753 0.350984
64 = -0.473212 0.870868 0.132889
65 = -0.473231 0.872877 -0.118903
66 = -0.34696 0.875356 -0.336707
67 = -0.127088 0.876884 -0.463598
68 = 0.127351 0.876934 -0.463431
69 = 0.346395 0.875765 -0.336223
70 = 0.472835 0.873096 -0.118872
71 = 0.473108 0.870929 0.132863
72 = 0.346842 0.86974 0.351073
73 = 0.127316 0.869377 0.477466
74 = -0.199032 0.958318 0.204969
75 = -0.271672 0.959074 0.0798282
76 = -0.27172 0.960219 -0.0644016
77 = -0.199116 0.961456 -0.189617
78 = -0.0729408 0.962309 -0.261996
79 = 0.0733547 0.962349 -0.261731
80 = 0.198561 0.961819 -0.188356
81 = 0.271443 0.960222 -0.0655239
82 = 0.27156 0.959107 0.0798106
83 = 0.198947 0.958326 0.205014
84 = -0.0729143 0.958009 0.277311
85 = 0.0729331 0.957991 0.277371
86 = 0.130368 0.861546 0.490655
87 = 0.356115 0.861794 0.361238
88 = 0.486472 0.862935 0.136705
89 = 0.48653 0.864985 -0.12284
90 = 0.356263 0.867415 -0.347372
91 = 0.130387 0.869173 -0.477008
92 = -0.130482 0.869182 -0.476966
93 = -0.354711 0.869084 -0.344781
94 = -0.485239 0.865645 -0.123296
95 = -0.486202 0.863111 0.136553
96 = -0.355848 0.862053 0.360883
97 = -0.13012 0.861851 0.490186
98 = 0.11725 0.985381 0.123599
99 = 0.159376 0.985948 0.0500642
100 = 0.159654 0.986583 -0.0341282
101 = 0.117822 0.987124 -0.108183
102 = 0.0435414 0.987395 -0.152167
103 = -0.0435193 0.987356 -0.152426
104 = -0.115547 0.987756 -0.104816
105 = -0.160187 0.98646 -0.0351721
106 = -0.159276 0.985964 0.0500638
107 = -0.117168 0.985396 0.123555
108 = 0.0432196 0.984996 0.167079
109 = -0.0430647 0.985062 0.166728
110 = 1.58852e-005 0.999975 0.00703725
111 = -0.000122291 0.999968 0.00800205
112 = 0.251393 0.253121 0.934201
113 = 0.685041 0.254294 0.682681
114 = 0.933384 0.2569 0.250594
115 = 0.933407 0.260886 -0.246352
116 = 0.683114 0.265365 -0.680394
117 = 0.251257 0.261514 -0.931923
118 = -0.25111 0.260385 -0.932279
119 = -0.683134 0.265163 -0.680453
120 = -0.933409 0.260867 -0.246364
121 = -0.933417 0.256798 0.250573
122 = -0.684957 0.254099 0.682837
123 = -0.251407 0.253139 0.934192
124 = 0.234958 0.425007 0.874165
125 = 0.6403 0.42592 0.639224
126 = 0.506301 0.696775 0.508098
127 = 0.872456 0.428131 0.235637
128 = 0.690379 0.698258 0.189242
129 = 0.872468 0.431844 -0.228716
130 = 0.690361 0.701262 -0.177856
131 = 0.639812 0.435288 -0.633376
132 = 0.506173 0.704933 -0.496848
133 = 0.234834 0.434958 -0.869289
134 = 0.185546 0.707514 -0.681907
135 = -0.235266 0.434024 -0.869639
136 = -0.185648 0.707493 -0.6819
137 = -0.63956 0.43511 -0.633752
138 = -0.50618 0.705055 -0.496668
139 = -0.872481 0.431862 -0.228634
140 = -0.690374 0.701192 -0.178084
141 = -0.872465 0.42812 0.235621
142 = -0.690385 0.698238 0.189294
143 = -0.640215 0.425918 0.639311
144 = -0.506271 0.696907 0.507947
145 = -0.234884 0.424918 0.874228
146 = 0.185675 0.696313 0.693306
147 = -0.185755 0.696344 0.693254
148 = 0.127127 0.869363 0.477542
149 = 0.346901 0.869753 0.350984
150 = 0.473212 0.870868 0.132889
151 = 0.473231 0.872877 -0.118903
152 = 0.34696 0.875356 -0.336707
153 = 0.127088 0.876884 -0.463598
154 = -0.127351 0.876934 -0.463431
155 = -0.346395 0.875765 -0.336223
156 = -0.472835 0.873096 -0.118872
157 = -0.473108 0.870929 0.132863
158 = -0.346842 0.86974 0.351073
159 = -0.127316 0.869377 0.477466
160 = 0.199032 0.958318 0.204969
161 = 0.271672 0.959074 0.0798282
162 = 0.27172 0.960219 -0.0644016
163 = 0.199116 0.961456 -0.189617
164 = 0.0729408 0.962309 -0.261996
165 = -0.0733547 0.962349 -0.261731
166 = -0.198561 0.961819 -0.188356
167 = -0.271443 0.960222 -0.0655239
168 = -0.27156 0.959107 0.0798106
169 = -0.198947 0.958326 0.205014
170 = 0.0729143 0.958009 0.277311
171 = -0.0729331 0.957991 0.277371
}
positionVertex
{
0 = 0.0291135 0.0377395 1.62872
1 = 0.0321406 0.0377395 1.62872
2 = 0.0264924 0.0377518 1.62719
3 = 0.0249788 0.037773 1.62455
4 = 0.0249788 0.0377976 1.6215
5 = 0.0265076 0.0378187 1.61887
6 = 0.0291135 0.0378311 1.61733
7 = 0.0321406 0.0378311 1.61733
8 = 0.0347617 0.0378189 1.61886
9 = 0.0362753 0.0377977 1.6215
10 = 0.0362753 0.037773 1.62455
11 = 0.0347617 0.0377519 1.62719
12 = 0.0285248 0.0369297 1.63092
13 = 0.0248861 0.0369467 1.62881
14 = 0.0227848 0.0369762 1.62514
15 = 0.0227848 0.0370102 1.6209
16 = 0.0248861 0.0370397 1.61723
17 = 0.0285248 0.0370568 1.61511
18 = 0.0327273 0.0370566 1.61511
19 = 0.0363661 0.0370398 1.61723
20 = 0.0384673 0.0370101 1.6209
21 = 0.0384674 0.0369762 1.62514
22 = 0.0363661 0.0369467 1.62881
23 = 0.0327274 0.0369298 1.63093
24 = 0.0275857 0.0341778 1.63443
25 = 0.0336665 0.0341779 1.63443
26 = 0.026904 0.0307126 1.63698
27 = 0.0223213 0.0342023 1.63137
28 = 0.020453 0.0307428 1.63322
29 = 0.019281 0.0342451 1.62606
30 = 0.016731 0.0307952 1.62672
31 = 0.019281 0.0342942 1.61993
32 = 0.016731 0.0308554 1.61922
33 = 0.0223214 0.0343372 1.61463
34 = 0.020453 0.0309076 1.61271
35 = 0.0275857 0.0343618 1.61156
36 = 0.0269041 0.0309378 1.60896
37 = 0.0336665 0.0343616 1.61156
38 = 0.0343505 0.0309377 1.60896
39 = 0.0389308 0.0343371 1.61462
40 = 0.0407991 0.0309076 1.61271
41 = 0.0419712 0.0342944 1.61993
42 = 0.0445212 0.0308553 1.61921
43 = 0.0419711 0.034245 1.62606
44 = 0.0445212 0.0307952 1.62672
45 = 0.0389308 0.0342023 1.63137
46 = 0.0407991 0.0307429 1.63322
47 = 0.0343505 0.0307128 1.63698
48 = 0.0263278 0.0223847 1.63908
49 = 0.0188813 0.0224195 1.63474
50 = 0.0145806 0.02248 1.62724
51 = 0.0145806 0.0225495 1.61857
52 = 0.0188788 0.0226098 1.61106
53 = 0.0263458 0.0228309 1.60687
54 = 0.0349254 0.0227327 1.60683
55 = 0.0423732 0.0226097 1.61106
56 = 0.0466715 0.0225495 1.61857
57 = 0.0466716 0.0224801 1.62724
58 = 0.0423733 0.0224195 1.63474
59 = 0.0349268 0.0223848 1.63908
60 = 0.0306262 0.0390645 1.62304
61 = 0.0306289 0.0357722 1.62303
62 = 0.0291135 0.0377395 1.62872
63 = 0.0321406 0.0377395 1.62872
64 = 0.0264924 0.0377518 1.62719
65 = 0.0249788 0.037773 1.62455
66 = 0.0249788 0.0377976 1.6215
67 = 0.0265076 0.0378187 1.61887
68 = 0.0291135 0.0378311 1.61733
69 = 0.0321406 0.0378311 1.61733
70 = 0.0347617 0.0378189 1.61886
71 = 0.0362753 0.0377977 1.6215
72 = 0.0362753 0.0377731 1.62455
73 = 0.0347617 0.0377519 1.62719
74 = 0.0285248 0.0363985 1.63092
75 = 0.0248861 0.0364154 1.6288
76 = 0.0227848 0.036445 1.62513
77 = 0.0227847 0.0364789 1.62089
78 = 0.0248861 0.0365086 1.61723
79 = 0.0285248 0.0365255 1.61511
80 = 0.0327274 0.0365254 1.61511
81 = 0.0363661 0.0365086 1.61723
82 = 0.0384673 0.036479 1.6209
83 = 0.0384674 0.0364451 1.62513
84 = 0.036366 0.0364154 1.6288
85 = 0.0327273 0.0363984 1.63092
86 = -0.0291135 0.0377395 1.62872
87 = -0.0321406 0.0377395 1.62872
88 = -0.0264924 0.0377518 1.62719
89 = -0.0249788 0.037773 1.62455
90 = -0.0249788 0.0377976 1.6215
91 = -0.0265076 0.0378187 1.61887
92 = -0.0291135 0.0378311 1.61733
93 = -0.0321406 0.0378311 1.61733
94 = -0.0347617 0.0378189 1.61886
95 = -0.0362753 0.0377977 1.6215
96 = -0.0362753 0.037773 1.62455
97 = -0.0347617 0.0377519 1.62719
98 = -0.0285248 0.0369297 1.63092
99 = -0.0248861 0.0369467 1.62881
100 = -0.0227848 0.0369762 1.62514
101 = -0.0227848 0.0370102 1.6209
102 = -0.0248861 0.0370397 1.61723
103 = -0.0285248 0.0370568 1.61511
104 = -0.0327273 0.0370566 1.61511
105 = -0.0363661 0.0370398 1.61723
106 = -0.0384673 0.0370101 1.6209
107 = -0.0384674 0.0369762 1.62514
108 = -0.0363661 0.0369467 1.62881
109 = -0.0327274 0.0369298 1.63093
110 = -0.0275857 0.0341778 1.63443
111 = -0.0336665 0.0341779 1.63443
112 = -0.026904 0.0307126 1.63698
113 = -0.0223213 0.0342023 1.63137
114 = -0.020453 0.0307428 1.63322
115 = -0.019281 0.0342451 1.62606
116 = -0.016731 0.0307952 1.62672
117 = -0.019281 0.0342942 1.61993
118 = -0.016731 0.0308554 1.61922
119 = -0.0223214 0.0343372 1.61463
120 = -0.020453 0.0309076 1.61271
121 = -0.0275857 0.0343618 1.61156
122 = -0.0269041 0.0309378 1.60896
123 = -0.0336665 0.0343616 1.61156
124 = -0.0343505 0.0309377 1.60896
125 = -0.0389308 0.0343371 1.61462
126 = -0.0407991 0.0309076 1.61271
127 = -0.0419712 0.0342944 1.61993
128 = -0.0445212 0.0308553 1.61921
129 = -0.0419711 0.034245 1.62606
130 = -0.0445212 0.0307952 1.62672
131 = -0.0389308 0.0342023 1.63137
132 = -0.0407991 0.0307429 1.63322
133 = -0.0343505 0.0307128 1.63698
134 = -0.0263278 0.0223847 1.63908
135 = -0.0188813 0.0224195 1.63474
136 = -0.0145806 0.02248 1.62724
137 = -0.0145806 0.0225495 1.61857
138 = -0.0188788 0.0226098 1.61106
139 = -0.0263458 0.0228309 1.60687
140 = -0.0349254 0.0227327 1.60683
141 = -0.0423732 0.0226097 1.61106
142 = -0.0466715 0.0225495 1.61857
143 = -0.0466716 0.0224801 1.62724
144 = -0.0423733 0.0224195 1.63474
145 = -0.0349268 0.0223848 1.63908
146 = -0.0306262 0.0390645 1.62304
147 = -0.0306289 0.0357722 1.62303
148 = -0.0291135 0.0377395 1.62872
149 = -0.0321406 0.0377395 1.62872
150 = -0.0264924 0.0377518 1.62719
151 = -0.0249788 0.037773 1.62455
152 = -0.0249788 0.0377976 1.6215
153 = -0.0265076 0.0378187 1.61887
154 = -0.0291135 0.0378311 1.61733
155 = -0.0321406 0.0378311 1.61733
156 = -0.0347617 0.0378189 1.61886
157 = -0.0362753 0.0377977 1.6215
158 = -0.0362753 0.0377731 1.62455
159 = -0.0347617 0.0377519 1.62719
160 = -0.0285248 0.0363985 1.63092
161 = -0.0248861 0.0364154 1.6288
162 = -0.0227848 0.036445 1.62513
163 = -0.0227847 0.0364789 1.62089
164 = -0.0248861 0.0365086 1.61723
165 = -0.0285248 0.0365255 1.61511
166 = -0.0327274 0.0365254 1.61511
167 = -0.0363661 0.0365086 1.61723
168 = -0.0384673 0.036479 1.6209
169 = -0.0384674 0.0364451 1.62513
170 = -0.036366 0.0364154 1.6288
171 = -0.0327273 0.0363984 1.63092
}
textureTriangle
{
0
{
0 = 0 1 2
1 = 3 2 1
2 = 2 3 4
3 = 5 4 3
4 = 4 5 6
5 = 7 6 5
6 = 8 6 9
7 = 9 6 7
8 = 12 11 13
9 = 13 11 10
10 = 12 13 14
11 = 15 14 13
12 = 14 15 16
13 = 17 16 15
14 = 18 16 19
15 = 19 16 17
16 = 20 18 21
17 = 21 18 19
18 = 22 20 23
19 = 23 20 21
20 = 0 22 1
21 = 22 23 1
22 = 11 8 10
23 = 10 8 9
24 = 25 22 24
25 = 22 0 24
26 = 24 0 27
27 = 0 2 27
28 = 26 24 28
29 = 24 27 28
30 = 27 2 29
31 = 2 4 29
32 = 28 27 30
33 = 27 29 30
34 = 31 29 6
35 = 4 6 29
36 = 30 29 32
37 = 29 31 32
38 = 33 31 8
39 = 6 8 31
40 = 34 32 33
41 = 31 33 32
42 = 35 33 11
43 = 8 11 33
44 = 36 34 35
45 = 33 35 34
46 = 37 35 12
47 = 11 12 35
48 = 38 36 37
49 = 35 37 36
50 = 37 12 39
51 = 12 14 39
52 = 38 37 40
53 = 37 39 40
54 = 39 14 41
55 = 14 16 41
56 = 40 39 42
57 = 39 41 42
58 = 41 16 43
59 = 16 18 43
60 = 42 41 44
61 = 41 43 44
62 = 45 43 20
63 = 18 20 43
64 = 46 44 45
65 = 43 45 44
66 = 25 45 22
67 = 20 22 45
68 = 47 46 25
69 = 45 25 46
70 = 47 25 26
71 = 25 24 26
72 = 48 26 49
73 = 28 49 26
74 = 49 28 50
75 = 30 50 28
76 = 51 50 32
77 = 32 50 30
78 = 52 51 34
79 = 34 51 32
80 = 52 34 53
81 = 36 53 34
82 = 54 53 38
83 = 38 53 36
84 = 55 54 40
85 = 40 54 38
86 = 55 40 56
87 = 42 56 40
88 = 57 56 44
89 = 44 56 42
90 = 58 57 46
91 = 46 57 44
92 = 59 58 47
93 = 47 58 46
94 = 59 47 48
95 = 47 26 48
96 = 60 61 62
97 = 60 63 61
98 = 60 64 63
99 = 60 65 64
100 = 60 66 65
101 = 60 67 66
102 = 60 68 67
103 = 60 69 68
104 = 60 70 69
105 = 60 71 70
106 = 60 72 71
107 = 60 62 72
108 = 73 75 74
109 = 73 74 76
110 = 73 76 77
111 = 73 77 78
112 = 73 78 79
113 = 73 79 80
114 = 73 80 81
115 = 73 81 82
116 = 73 82 83
117 = 73 83 84
118 = 73 84 85
119 = 73 85 75
120 = 86 75 87
121 = 75 85 87
122 = 87 85 88
123 = 85 84 88
124 = 89 88 83
125 = 84 83 88
126 = 90 89 82
127 = 83 82 89
128 = 91 81 92
129 = 81 80 92
130 = 92 80 93
131 = 80 79 93
132 = 93 79 94
133 = 79 78 94
134 = 94 78 95
135 = 78 77 95
136 = 96 95 76
137 = 77 76 95
138 = 97 96 74
139 = 76 74 96
140 = 86 97 75
141 = 97 74 75
142 = 91 90 81
143 = 82 81 90
144 = 98 99 120
145 = 99 121 120
146 = 98 100 99
147 = 99 100 101
148 = 100 102 101
149 = 101 102 103
150 = 102 104 103
151 = 103 104 105
152 = 106 107 104
153 = 105 104 107
154 = 109 108 106
155 = 107 106 108
156 = 110 111 109
157 = 108 109 111
158 = 110 112 111
159 = 111 112 113
160 = 112 114 113
161 = 113 114 115
162 = 116 117 114
163 = 115 114 117
164 = 118 119 116
165 = 117 116 119
166 = 120 121 118
167 = 119 118 121
168 = 123 122 120
169 = 122 98 120
170 = 122 125 98
171 = 100 98 125
172 = 145 124 123
173 = 124 122 123
174 = 124 126 122
175 = 125 122 126
176 = 125 127 100
177 = 102 100 127
178 = 126 128 125
179 = 127 125 128
180 = 129 104 127
181 = 104 102 127
182 = 128 130 127
183 = 129 127 130
184 = 131 106 129
185 = 106 104 129
186 = 132 131 130
187 = 131 129 130
188 = 133 109 131
189 = 109 106 131
190 = 134 133 132
191 = 133 131 132
192 = 135 110 133
193 = 110 109 133
194 = 136 135 134
195 = 135 133 134
196 = 135 137 110
197 = 112 110 137
198 = 136 138 135
199 = 137 135 138
200 = 137 139 112
201 = 114 112 139
202 = 138 140 137
203 = 139 137 140
204 = 139 141 114
205 = 116 114 141
206 = 140 142 139
207 = 141 139 142
208 = 143 118 141
209 = 118 116 141
210 = 144 143 142
211 = 143 141 142
212 = 123 120 143
213 = 120 118 143
214 = 145 123 144
215 = 123 143 144
216 = 157 146 145
217 = 146 124 145
218 = 146 147 124
219 = 126 124 147
220 = 147 148 126
221 = 128 126 148
222 = 149 130 148
223 = 130 128 148
224 = 150 132 149
225 = 132 130 149
226 = 150 151 132
227 = 134 132 151
228 = 152 136 151
229 = 136 134 151
230 = 153 138 152
231 = 138 136 152
232 = 153 154 138
233 = 140 138 154
234 = 155 142 154
235 = 142 140 154
236 = 156 144 155
237 = 144 142 155
238 = 157 145 156
239 = 145 144 156
240 = 158 160 159
241 = 158 159 161
242 = 158 161 162
243 = 158 162 163
244 = 158 163 164
245 = 158 164 165
246 = 158 165 166
247 = 158 166 167
248 = 158 167 168
249 = 158 168 169
250 = 158 169 170
251 = 158 170 160
252 = 171 172 173
253 = 171 174 172
254 = 171 175 174
255 = 171 176 175
256 = 171 177 176
257 = 171 178 177
258 = 171 179 178
259 = 171 180 179
260 = 171 181 180
261 = 171 182 181
262 = 171 183 182
263 = 171 173 183
264 = 184 173 195
265 = 195 173 172
266 = 184 185 173
267 = 183 173 185
268 = 185 186 183
269 = 182 183 186
270 = 187 181 186
271 = 181 182 186
272 = 188 180 187
273 = 180 181 187
274 = 189 179 188
275 = 179 180 188
276 = 189 190 179
277 = 178 179 190
278 = 190 191 178
279 = 177 178 191
280 = 191 192 177
281 = 176 177 192
282 = 192 193 176
283 = 175 176 193
284 = 194 174 193
285 = 174 175 193
286 = 195 172 194
287 = 172 174 194
}
}
textureVertex
{
0
{
0 = 0.561761 -0.726082
1 = 0.551 -0.694653
2 = 0.667924 -0.668954
3 = 0.641168 -0.642474
4 = 0.724961 -0.562631
5 = 0.693233 -0.552104
6 = 0.724962 -0.437223
7 = 0.693236 -0.447734
8 = 0.667923 -0.3309
9 = 0.641172 -0.357366
10 = 0.551 -0.305113
11 = 0.561757 -0.273757
12 = 0.436533 -0.273757
13 = 0.446868 -0.305113
14 = 0.330368 -0.330902
15 = 0.356696 -0.357366
16 = 0.273332 -0.437227
17 = 0.304632 -0.447734
18 = 0.273334 -0.562636
19 = 0.304635 -0.552104
20 = 0.330374 -0.668957
21 = 0.3567 -0.642474
22 = 0.436538 -0.726082
23 = 0.446868 -0.694653
24 = 0.578462 -0.774482
25 = 0.42036 -0.774485
26 = 0.602036 -0.841029
27 = 0.710421 -0.710439
28 = 0.772104 -0.771885
29 = 0.776465 -0.578926
30 = 0.842282 -0.602292
31 = 0.776469 -0.420841
32 = 0.842279 -0.397483
33 = 0.71041 -0.288779
34 = 0.772092 -0.227455
35 = 0.578488 -0.222724
36 = 0.602036 -0.157205
37 = 0.420384 -0.222725
38 = 0.397202 -0.15721
39 = 0.288464 -0.288784
40 = 0.22721 -0.227461
41 = 0.222407 -0.42085
42 = 0.157027 -0.397492
43 = 0.222411 -0.578933
44 = 0.157025 -0.6023
45 = 0.288454 -0.710448
46 = 0.227206 -0.771895
47 = 0.397191 -0.841028
48 = 0.66666 -1
49 = 1 -1
50 = 1 -0.666652
51 = 1 -0.333302
52 = 1 0
53 = 0.666626 0
54 = 0.333283 0
55 = 0 0
56 = 0 -0.333324
57 = 0 -0.666692
58 = 0 -1
59 = 0.333328 -1
60 = 1.92714 -0.911349
61 = 1.946 -0.982933
62 = 1.90827 -0.982933
63 = 1.97866 -0.963752
64 = 1.99752 -0.930532
65 = 1.99753 -0.892165
66 = 1.97866 -0.858945
67 = 1.946 -0.839738
68 = 1.90827 -0.839738
69 = 1.87561 -0.858946
70 = 1.85674 -0.892165
71 = 1.85674 -0.930533
72 = 1.87561 -0.963752
73 = 0.499947 -0.499918
74 = 0.446868 -0.694653
75 = 0.551 -0.694653
76 = 0.3567 -0.642474
77 = 0.304635 -0.552104
78 = 0.304632 -0.447734
79 = 0.356696 -0.357366
80 = 0.446868 -0.305113
81 = 0.551 -0.305113
82 = 0.641172 -0.357366
83 = 0.693236 -0.447734
84 = 0.693233 -0.552104
85 = 0.641168 -0.642474
86 = 0.561761 -0.726082
87 = 0.667924 -0.668954
88 = 0.724961 -0.562631
89 = 0.724962 -0.437223
90 = 0.667923 -0.3309
91 = 0.561757 -0.273757
92 = 0.436533 -0.273757
93 = 0.330368 -0.330902
94 = 0.273332 -0.437227
95 = 0.273334 -0.562636
96 = 0.330374 -0.668957
97 = 0.436538 -0.726082
98 = 0.561761 -0.726082
99 = 0.551 -0.694653
100 = 0.667924 -0.668954
101 = 0.641168 -0.642474
102 = 0.724961 -0.562631
103 = 0.693233 -0.552104
104 = 0.724962 -0.437223
105 = 0.693236 -0.447734
106 = 0.667923 -0.3309
107 = 0.641172 -0.357366
108 = 0.551 -0.305113
109 = 0.561757 -0.273757
110 = 0.436533 -0.273757
111 = 0.446868 -0.305113
112 = 0.330368 -0.330902
113 = 0.356696 -0.357366
114 = 0.273332 -0.437227
115 = 0.304632 -0.447734
116 = 0.273334 -0.562636
117 = 0.304635 -0.552104
118 = 0.330374 -0.668957
119 = 0.3567 -0.642474
120 = 0.436538 -0.726082
121 = 0.446868 -0.694653
122 = 0.578462 -0.774482
123 = 0.42036 -0.774485
124 = 0.602036 -0.841029
125 = 0.710421 -0.710439
126 = 0.772104 -0.771885
127 = 0.776465 -0.578926
128 = 0.842282 -0.602292
129 = 0.776469 -0.420841
130 = 0.842279 -0.397483
131 = 0.71041 -0.288779
132 = 0.772092 -0.227455
133 = 0.578488 -0.222724
134 = 0.602036 -0.157205
135 = 0.420384 -0.222725
136 = 0.397202 -0.15721
137 = 0.288464 -0.288784
138 = 0.22721 -0.227461
139 = 0.222407 -0.42085
140 = 0.157027 -0.397492
141 = 0.222411 -0.578933
142 = 0.157025 -0.6023
143 = 0.288454 -0.710448
144 = 0.227206 -0.771895
145 = 0.397191 -0.841028
146 = 0.66666 -1
147 = 1 -1
148 = 1 -0.666652
149 = 1 -0.333302
150 = 1 0
151 = 0.666626 0
152 = 0.333283 0
153 = 0 0
154 = 0 -0.333324
155 = 0 -0.666692
156 = 0 -1
157 = 0.333328 -1
158 = 1.92714 -0.911349
159 = 1.946 -0.982933
160 = 1.90827 -0.982933
161 = 1.97866 -0.963752
162 = 1.99752 -0.930532
163 = 1.99753 -0.892165
164 = 1.97866 -0.858945
165 = 1.946 -0.839738
166 = 1.90827 -0.839738
167 = 1.87561 -0.858946
168 = 1.85674 -0.892165
169 = 1.85674 -0.930533
170 = 1.87561 -0.963752
171 = 0.499947 -0.499918
172 = 0.446868 -0.694653
173 = 0.551 -0.694653
174 = 0.3567 -0.642474
175 = 0.304635 -0.552104
176 = 0.304632 -0.447734
177 = 0.356696 -0.357366
178 = 0.446868 -0.305113
179 = 0.551 -0.305113
180 = 0.641172 -0.357366
181 = 0.693236 -0.447734
182 = 0.693233 -0.552104
183 = 0.641168 -0.642474
184 = 0.561761 -0.726082
185 = 0.667924 -0.668954
186 = 0.724961 -0.562631
187 = 0.724962 -0.437223
188 = 0.667923 -0.3309
189 = 0.561757 -0.273757
190 = 0.436533 -0.273757
191 = 0.330368 -0.330902
192 = 0.273332 -0.437227
193 = 0.273334 -0.562636
194 = 0.330374 -0.668957
195 = 0.436538 -0.726082
}
}
triangle
{
0
{
materialNr = 2
normalVertexNr = 159 171 158
positionVertexNr = 12 0 13
smoothingGroup = 73760
}
1
{
materialNr = 2
normalVertexNr = 169 158 171
positionVertexNr = 2 13 0
smoothingGroup = 8388644
}
2
{
materialNr = 2
normalVertexNr = 158 169 157
positionVertexNr = 13 2 14
smoothingGroup = 16396
}
3
{
materialNr = 2
normalVertexNr = 168 157 169
positionVertexNr = 3 14 2
smoothingGroup = 4194376
}
4
{
materialNr = 2
normalVertexNr = 157 168 156
positionVertexNr = 14 3 15
smoothingGroup = 8288
}
5
{
materialNr = 2
normalVertexNr = 167 156 168
positionVertexNr = 4 15 3
smoothingGroup = 2097188
}
6
{
materialNr = 2
normalVertexNr = 155 156 166
positionVertexNr = 16 15 5
smoothingGroup = 19456
}
7
{
materialNr = 2
normalVertexNr = 166 156 167
positionVertexNr = 5 15 4
smoothingGroup = 1049604
}
8
{
materialNr = 2
normalVertexNr = 153 154 164
positionVertexNr = 18 17 7
smoothingGroup = 102400
}
9
{
materialNr = 2
normalVertexNr = 164 154 165
positionVertexNr = 7 17 6
smoothingGroup = 589952
}
10
{
materialNr = 2
normalVertexNr = 153 164 152
positionVertexNr = 18 7 19
smoothingGroup = 22528
}
11
{
materialNr = 2
normalVertexNr = 163 152 164
positionVertexNr = 8 19 7
smoothingGroup = 264704
}
12
{
materialNr = 2
normalVertexNr = 152 163 151
positionVertexNr = 19 8 20
smoothingGroup = 672
}
13
{
materialNr = 2
normalVertexNr = 162 151 163
positionVertexNr = 9 20 8
smoothingGroup = 131168
}
14
{
materialNr = 2
normalVertexNr = 150 151 161
positionVertexNr = 21 20 10
smoothingGroup = 4368
}
15
{
materialNr = 2
normalVertexNr = 161 151 162
positionVertexNr = 10 20 9
smoothingGroup = 65616
}
16
{
materialNr = 2
normalVertexNr = 149 150 160
positionVertexNr = 22 21 11
smoothingGroup = 608
}
17
{
materialNr = 2
normalVertexNr = 160 150 161
positionVertexNr = 11 21 10
smoothingGroup = 20512
}
18
{
materialNr = 2
normalVertexNr = 148 149 170
positionVertexNr = 23 22 1
smoothingGroup = 4480
}
19
{
materialNr = 2
normalVertexNr = 170 149 160
positionVertexNr = 1 22 11
smoothingGroup = 8832
}
20
{
materialNr = 2
normalVertexNr = 159 148 171
positionVertexNr = 12 23 0
smoothingGroup = 65616
}
21
{
materialNr = 2
normalVertexNr = 148 170 171
positionVertexNr = 23 1 0
smoothingGroup = 33088
}
22
{
materialNr = 2
normalVertexNr = 154 155 165
positionVertexNr = 17 16 6
smoothingGroup = 8832
}
23
{
materialNr = 2
normalVertexNr = 165 155 166
positionVertexNr = 6 16 5
smoothingGroup = 20992
}
24
{
materialNr = 2
normalVertexNr = 146 148 147
positionVertexNr = 25 23 24
smoothingGroup = 24578
}
25
{
materialNr = 2
normalVertexNr = 148 159 147
positionVertexNr = 23 12 24
smoothingGroup = 26
}
26
{
materialNr = 2
normalVertexNr = 147 159 144
positionVertexNr = 24 12 27
smoothingGroup = 137
}
27
{
materialNr = 2
normalVertexNr = 159 158 144
positionVertexNr = 12 13 27
smoothingGroup = 10241
}
28
{
materialNr = 2
normalVertexNr = 145 147 143
positionVertexNr = 26 24 28
smoothingGroup = 7168
}
29
{
materialNr = 2
normalVertexNr = 147 144 143
positionVertexNr = 24 27 28
smoothingGroup = 1408
}
30
{
materialNr = 2
normalVertexNr = 144 158 142
positionVertexNr = 27 13 29
smoothingGroup = 2562
}
31
{
materialNr = 2
normalVertexNr = 158 157 142
positionVertexNr = 13 14 29
smoothingGroup = 16402
}
32
{
materialNr = 2
normalVertexNr = 143 144 141
positionVertexNr = 28 27 30
smoothingGroup = 292
}
33
{
materialNr = 2
normalVertexNr = 144 142 141
positionVertexNr = 27 29 30
smoothingGroup = 4612
}
34
{
materialNr = 2
normalVertexNr = 140 142 156
positionVertexNr = 31 29 15
smoothingGroup = 265
}
35
{
materialNr = 2
normalVertexNr = 157 156 142
positionVertexNr = 14 15 29
smoothingGroup = 8209
}
36
{
materialNr = 2
normalVertexNr = 141 142 139
positionVertexNr = 30 29 32
smoothingGroup = 4288
}
37
{
materialNr = 2
normalVertexNr = 142 140 139
positionVertexNr = 29 31 32
smoothingGroup = 352
}
38
{
materialNr = 2
normalVertexNr = 138 140 155
positionVertexNr = 33 31 16
smoothingGroup = 22
}
39
{
materialNr = 2
normalVertexNr = 156 155 140
positionVertexNr = 15 16 31
smoothingGroup = 2058
}
40
{
materialNr = 2
normalVertexNr = 137 139 138
positionVertexNr = 34 32 33
smoothingGroup = 3584
}
41
{
materialNr = 2
normalVertexNr = 140 138 139
positionVertexNr = 31 33 32
smoothingGroup = 1072
}
42
{
materialNr = 2
normalVertexNr = 136 138 154
positionVertexNr = 35 33 17
smoothingGroup = 321
}
43
{
materialNr = 2
normalVertexNr = 155 154 138
positionVertexNr = 16 17 33
smoothingGroup = 8197
}
44
{
materialNr = 2
normalVertexNr = 135 137 136
positionVertexNr = 36 34 35
smoothingGroup = 4256
}
45
{
materialNr = 2
normalVertexNr = 138 136 137
positionVertexNr = 33 35 34
smoothingGroup = 2240
}
46
{
materialNr = 2
normalVertexNr = 134 136 153
positionVertexNr = 37 35 18
smoothingGroup = 8198
}
47
{
materialNr = 2
normalVertexNr = 154 153 136
positionVertexNr = 17 18 35
smoothingGroup = 33026
}
48
{
materialNr = 2
normalVertexNr = 133 135 134
positionVertexNr = 38 36 37
smoothingGroup = 2128
}
49
{
materialNr = 2
normalVertexNr = 136 134 135
positionVertexNr = 35 37 36
smoothingGroup = 4116
}
50
{
materialNr = 2
normalVertexNr = 134 153 132
positionVertexNr = 37 18 39
smoothingGroup = 9217
}
51
{
materialNr = 2
normalVertexNr = 153 152 132
positionVertexNr = 18 19 39
smoothingGroup = 16393
}
52
{
materialNr = 2
normalVertexNr = 133 134 131
positionVertexNr = 38 37 40
smoothingGroup = 2336
}
53
{
materialNr = 2
normalVertexNr = 134 132 131
positionVertexNr = 37 39 40
smoothingGroup = 1568
}
54
{
materialNr = 2
normalVertexNr = 132 152 130
positionVertexNr = 39 19 41
smoothingGroup = 14
}
55
{
materialNr = 2
normalVertexNr = 152 151 130
positionVertexNr = 19 20 41
smoothingGroup = 1154
}
56
{
materialNr = 2
normalVertexNr = 131 132 129
positionVertexNr = 40 39 42
smoothingGroup = 704
}
57
{
materialNr = 2
normalVertexNr = 132 130 129
positionVertexNr = 39 41 42
smoothingGroup = 4164
}
58
{
materialNr = 2
normalVertexNr = 130 151 128
positionVertexNr = 41 20 43
smoothingGroup = 3073
}
59
{
materialNr = 2
normalVertexNr = 151 150 128
positionVertexNr = 20 21 43
smoothingGroup = 265
}
60
{
materialNr = 2
normalVertexNr = 129 130 127
positionVertexNr = 42 41 44
smoothingGroup = 4384
}
61
{
materialNr = 2
normalVertexNr = 130 128 127
positionVertexNr = 41 43 44
smoothingGroup = 2592
}
62
{
materialNr = 2
normalVertexNr = 126 128 149
positionVertexNr = 45 43 22
smoothingGroup = 22
}
63
{
materialNr = 2
normalVertexNr = 150 149 128
positionVertexNr = 21 22 43
smoothingGroup = 74
}
64
{
materialNr = 2
normalVertexNr = 125 127 126
positionVertexNr = 46 44 45
smoothingGroup = 1216
}
65
{
materialNr = 2
normalVertexNr = 128 126 127
positionVertexNr = 43 45 44
smoothingGroup = 656
}
66
{
materialNr = 2
normalVertexNr = 146 126 148
positionVertexNr = 25 45 23
smoothingGroup = 8225
}
67
{
materialNr = 2
normalVertexNr = 149 148 126
positionVertexNr = 22 23 45
smoothingGroup = 4101
}
68
{
materialNr = 2
normalVertexNr = 124 125 146
positionVertexNr = 47 46 25
smoothingGroup = 784
}
69
{
materialNr = 2
normalVertexNr = 126 146 125
positionVertexNr = 45 25 46
smoothingGroup = 1312
}
70
{
materialNr = 2
normalVertexNr = 124 146 145
positionVertexNr = 47 25 26
smoothingGroup = 704
}
71
{
materialNr = 2
normalVertexNr = 146 147 145
positionVertexNr = 25 24 26
smoothingGroup = 18496
}
72
{
materialNr = 2
normalVertexNr = 123 145 122
positionVertexNr = 48 26 49
smoothingGroup = 34
}
73
{
materialNr = 2
normalVertexNr = 143 122 145
positionVertexNr = 28 49 26
smoothingGroup = 4114
}
74
{
materialNr = 2
normalVertexNr = 122 143 121
positionVertexNr = 49 28 50
smoothingGroup = 17
}
75
{
materialNr = 2
normalVertexNr = 141 121 143
positionVertexNr = 30 50 28
smoothingGroup = 41
}
76
{
materialNr = 2
normalVertexNr = 120 121 139
positionVertexNr = 51 50 32
smoothingGroup = 6
}
77
{
materialNr = 2
normalVertexNr = 139 121 141
positionVertexNr = 32 50 30
smoothingGroup = 138
}
78
{
materialNr = 2
normalVertexNr = 119 120 137
positionVertexNr = 52 51 34
smoothingGroup = 17
}
79
{
materialNr = 2
normalVertexNr = 137 120 139
positionVertexNr = 34 51 32
smoothingGroup = 517
}
80
{
materialNr = 2
normalVertexNr = 119 137 118
positionVertexNr = 52 34 53
smoothingGroup = 18
}
81
{
materialNr = 2
normalVertexNr = 135 118 137
positionVertexNr = 36 53 34
smoothingGroup = 42
}
82
{
materialNr = 2
normalVertexNr = 117 118 133
positionVertexNr = 54 53 38
smoothingGroup = 5
}
83
{
materialNr = 2
normalVertexNr = 133 118 135
positionVertexNr = 38 53 36
smoothingGroup = 73
}
84
{
materialNr = 2
normalVertexNr = 116 117 131
positionVertexNr = 55 54 40
smoothingGroup = 18
}
85
{
materialNr = 2
normalVertexNr = 131 117 133
positionVertexNr = 40 54 38
smoothingGroup = 262
}
86
{
materialNr = 2
normalVertexNr = 116 131 115
positionVertexNr = 55 40 56
smoothingGroup = 17
}
87
{
materialNr = 2
normalVertexNr = 129 115 131
positionVertexNr = 42 56 40
smoothingGroup = 137
}
88
{
materialNr = 2
normalVertexNr = 114 115 127
positionVertexNr = 57 56 44
smoothingGroup = 6
}
89
{
materialNr = 2
normalVertexNr = 127 115 129
positionVertexNr = 44 56 42
smoothingGroup = 266
}
90
{
materialNr = 2
normalVertexNr = 113 114 125
positionVertexNr = 58 57 46
smoothingGroup = 9
}
91
{
materialNr = 2
normalVertexNr = 125 114 127
positionVertexNr = 46 57 44
smoothingGroup = 69
}
92
{
materialNr = 2
normalVertexNr = 112 113 124
positionVertexNr = 59 58 47
smoothingGroup = 6
}
93
{
materialNr = 2
normalVertexNr = 124 113 125
positionVertexNr = 47 58 46
smoothingGroup = 26
}
94
{
materialNr = 2
normalVertexNr = 112 124 123
positionVertexNr = 59 47 48
smoothingGroup = 5
}
95
{
materialNr = 2
normalVertexNr = 124 145 123
positionVertexNr = 47 26 48
smoothingGroup = 161
}
96
{
materialNr = 0
normalVertexNr = 111 171 170
positionVertexNr = 60 0 1
smoothingGroup = 35840
}
97
{
materialNr = 0
normalVertexNr = 111 169 171
positionVertexNr = 60 2 0
smoothingGroup = 8390144
}
98
{
materialNr = 0
normalVertexNr = 111 168 169
positionVertexNr = 60 3 2
smoothingGroup = 4195072
}
99
{
materialNr = 0
normalVertexNr = 111 167 168
positionVertexNr = 60 4 3
smoothingGroup = 2097536
}
100
{
materialNr = 0
normalVertexNr = 111 166 167
positionVertexNr = 60 5 4
smoothingGroup = 1048768
}
101
{
materialNr = 0
normalVertexNr = 111 165 166
positionVertexNr = 60 6 5
smoothingGroup = 4192
}
102
{
materialNr = 0
normalVertexNr = 111 164 165
positionVertexNr = 60 7 6
smoothingGroup = 524336
}
103
{
materialNr = 0
normalVertexNr = 111 163 164
positionVertexNr = 60 8 7
smoothingGroup = 262168
}
104
{
materialNr = 0
normalVertexNr = 111 162 163
positionVertexNr = 60 9 8
smoothingGroup = 131084
}
105
{
materialNr = 0
normalVertexNr = 111 161 162
positionVertexNr = 60 10 9
smoothingGroup = 65542
}
106
{
materialNr = 0
normalVertexNr = 111 160 161
positionVertexNr = 60 11 10
smoothingGroup = 16387
}
107
{
materialNr = 0
normalVertexNr = 111 170 160
positionVertexNr = 60 1 11
smoothingGroup = 10241
}
108
{
materialNr = 1
normalVertexNr = 110 109 108
positionVertexNr = 61 62 63
smoothingGroup = 117440512
}
109
{
materialNr = 1
normalVertexNr = 110 108 98
positionVertexNr = 61 63 73
smoothingGroup = 79691776
}
110
{
materialNr = 1
normalVertexNr = 110 98 99
positionVertexNr = 61 73 72
smoothingGroup = 11534336
}
111
{
materialNr = 1
normalVertexNr = 110 99 100
positionVertexNr = 61 72 71
smoothingGroup = 2883584
}
112
{
materialNr = 1
normalVertexNr = 110 100 101
positionVertexNr = 61 71 70
smoothingGroup = 655368
}
113
{
materialNr = 1
normalVertexNr = 110 101 102
positionVertexNr = 61 70 69
smoothingGroup = 229376
}
114
{
materialNr = 1
normalVertexNr = 110 102 103
positionVertexNr = 61 69 68
smoothingGroup = 90112
}
115
{
materialNr = 1
normalVertexNr = 110 103 104
positionVertexNr = 61 68 67
smoothingGroup = 22528
}
116
{
materialNr = 1
normalVertexNr = 110 104 105
positionVertexNr = 61 67 66
smoothingGroup = 5136
}
117
{
materialNr = 1
normalVertexNr = 110 105 106
positionVertexNr = 61 66 65
smoothingGroup = 1568
}
118
{
materialNr = 1
normalVertexNr = 110 106 107
positionVertexNr = 61 65 64
smoothingGroup = 896
}
119
{
materialNr = 1
normalVertexNr = 110 107 109
positionVertexNr = 61 64 62
smoothingGroup = 16777536
}
120
{
materialNr = 1
normalVertexNr = 97 109 96
positionVertexNr = 74 62 75
smoothingGroup = 40
}
121
{
materialNr = 1
normalVertexNr = 109 107 96
positionVertexNr = 62 64 75
smoothingGroup = 112
}
122
{
materialNr = 1
normalVertexNr = 96 107 95
positionVertexNr = 75 64 76
smoothingGroup = 18
}
123
{
materialNr = 1
normalVertexNr = 107 106 95
positionVertexNr = 64 65 76
smoothingGroup = 138
}
124
{
materialNr = 1
normalVertexNr = 94 95 105
positionVertexNr = 77 76 66
smoothingGroup = 5
}
125
{
materialNr = 1
normalVertexNr = 106 105 95
positionVertexNr = 65 66 76
smoothingGroup = 41
}
126
{
materialNr = 1
normalVertexNr = 93 94 104
positionVertexNr = 78 77 67
smoothingGroup = 34
}
127
{
materialNr = 1
normalVertexNr = 105 104 94
positionVertexNr = 66 67 77
smoothingGroup = 22
}
128
{
materialNr = 1
normalVertexNr = 92 103 91
positionVertexNr = 79 68 80
smoothingGroup = 20
}
129
{
materialNr = 1
normalVertexNr = 103 102 91
positionVertexNr = 68 69 80
smoothingGroup = 8216
}
130
{
materialNr = 1
normalVertexNr = 91 102 90
positionVertexNr = 80 69 81
smoothingGroup = 10
}
131
{
materialNr = 1
normalVertexNr = 102 101 90
positionVertexNr = 69 70 81
smoothingGroup = 32774
}
132
{
materialNr = 1
normalVertexNr = 90 101 89
positionVertexNr = 81 70 82
smoothingGroup = 5
}
133
{
materialNr = 1
normalVertexNr = 101 100 89
positionVertexNr = 70 71 82
smoothingGroup = 25
}
134
{
materialNr = 1
normalVertexNr = 89 100 88
positionVertexNr = 82 71 83
smoothingGroup = 18
}
135
{
materialNr = 1
normalVertexNr = 100 99 88
positionVertexNr = 71 72 83
smoothingGroup = 262150
}
136
{
materialNr = 1
normalVertexNr = 87 88 98
positionVertexNr = 84 83 73
smoothingGroup = 9
}
137
{
materialNr = 1
normalVertexNr = 99 98 88
positionVertexNr = 72 73 83
smoothingGroup = 1048581
}
138
{
materialNr = 1
normalVertexNr = 86 87 108
positionVertexNr = 85 84 63
smoothingGroup = 6
}
139
{
materialNr = 1
normalVertexNr = 98 108 87
positionVertexNr = 73 63 84
smoothingGroup = 4194314
}
140
{
materialNr = 1
normalVertexNr = 97 86 109
positionVertexNr = 74 85 62
smoothingGroup = 9
}
141
{
materialNr = 1
normalVertexNr = 86 108 109
positionVertexNr = 85 63 62
smoothingGroup = 33554437
}
142
{
materialNr = 1
normalVertexNr = 92 93 103
positionVertexNr = 79 78 68
smoothingGroup = 5
}
143
{
materialNr = 1
normalVertexNr = 104 103 93
positionVertexNr = 67 68 78
smoothingGroup = 2081
}
144
{
materialNr = 2
normalVertexNr = 73 85 62
positionVertexNr = 98 86 109
smoothingGroup = 131144
}
145
{
materialNr = 2
normalVertexNr = 85 84 62
positionVertexNr = 86 87 109
smoothingGroup = 8388872
}
146
{
materialNr = 2
normalVertexNr = 73 72 85
positionVertexNr = 98 99 86
smoothingGroup = 8288
}
147
{
materialNr = 2
normalVertexNr = 85 72 83
positionVertexNr = 86 99 88
smoothingGroup = 4202624
}
148
{
materialNr = 2
normalVertexNr = 72 71 83
positionVertexNr = 99 100 88
smoothingGroup = 4232
}
149
{
materialNr = 2
normalVertexNr = 83 71 82
positionVertexNr = 88 100 89
smoothingGroup = 2097224
}
150
{
materialNr = 2
normalVertexNr = 71 70 82
positionVertexNr = 100 101 89
smoothingGroup = 8288
}
151
{
materialNr = 2
normalVertexNr = 82 70 81
positionVertexNr = 89 101 90
smoothingGroup = 1048624
}
152
{
materialNr = 2
normalVertexNr = 69 80 70
positionVertexNr = 102 91 101
smoothingGroup = 6656
}
153
{
materialNr = 2
normalVertexNr = 81 70 80
positionVertexNr = 90 101 91
smoothingGroup = 526352
}
154
{
materialNr = 2
normalVertexNr = 68 79 69
positionVertexNr = 103 92 102
smoothingGroup = 41984
}
155
{
materialNr = 2
normalVertexNr = 80 69 79
positionVertexNr = 91 102 92
smoothingGroup = 263680
}
156
{
materialNr = 2
normalVertexNr = 67 78 68
positionVertexNr = 104 93 103
smoothingGroup = 16768
}
157
{
materialNr = 2
normalVertexNr = 79 68 78
positionVertexNr = 92 103 93
smoothingGroup = 139392
}
158
{
materialNr = 2
normalVertexNr = 67 66 78
positionVertexNr = 104 105 93
smoothingGroup = 6400
}
159
{
materialNr = 2
normalVertexNr = 78 66 77
positionVertexNr = 93 105 94
smoothingGroup = 70656
}
160
{
materialNr = 2
normalVertexNr = 66 65 77
positionVertexNr = 105 106 94
smoothingGroup = 9344
}
161
{
materialNr = 2
normalVertexNr = 77 65 76
positionVertexNr = 94 106 95
smoothingGroup = 33152
}
162
{
materialNr = 2
normalVertexNr = 64 75 65
positionVertexNr = 107 96 106
smoothingGroup = 4192
}
163
{
materialNr = 2
normalVertexNr = 76 65 75
positionVertexNr = 95 106 96
smoothingGroup = 16672
}
164
{
materialNr = 2
normalVertexNr = 63 74 64
positionVertexNr = 108 97 107
smoothingGroup = 16528
}
165
{
materialNr = 2
normalVertexNr = 75 64 74
positionVertexNr = 96 107 97
smoothingGroup = 8384
}
166
{
materialNr = 2
normalVertexNr = 62 84 63
positionVertexNr = 109 87 108
smoothingGroup = 65824
}
167
{
materialNr = 2
normalVertexNr = 74 63 84
positionVertexNr = 97 108 87
smoothingGroup = 4144
}
168
{
materialNr = 2
normalVertexNr = 60 61 62
positionVertexNr = 111 110 109
smoothingGroup = 57344
}
169
{
materialNr = 2
normalVertexNr = 61 73 62
positionVertexNr = 110 98 109
smoothingGroup = 147460
}
170
{
materialNr = 2
normalVertexNr = 61 58 73
positionVertexNr = 110 113 98
smoothingGroup = 4101
}
171
{
materialNr = 2
normalVertexNr = 72 73 58
positionVertexNr = 99 98 113
smoothingGroup = 2081
}
172
{
materialNr = 2
normalVertexNr = 38 59 60
positionVertexNr = 133 112 111
smoothingGroup = 3584
}
173
{
materialNr = 2
normalVertexNr = 59 61 60
positionVertexNr = 112 110 111
smoothingGroup = 9472
}
174
{
materialNr = 2
normalVertexNr = 59 57 61
positionVertexNr = 112 114 110
smoothingGroup = 352
}
175
{
materialNr = 2
normalVertexNr = 58 61 57
positionVertexNr = 113 110 114
smoothingGroup = 4168
}
176
{
materialNr = 2
normalVertexNr = 58 56 72
positionVertexNr = 113 115 99
smoothingGroup = 2066
}
177
{
materialNr = 2
normalVertexNr = 71 72 56
positionVertexNr = 100 99 115
smoothingGroup = 4102
}
178
{
materialNr = 2
normalVertexNr = 57 55 58
positionVertexNr = 114 116 113
smoothingGroup = 1160
}
179
{
materialNr = 2
normalVertexNr = 56 58 55
positionVertexNr = 115 113 116
smoothingGroup = 1552
}
180
{
materialNr = 2
normalVertexNr = 54 70 56
positionVertexNr = 117 101 115
smoothingGroup = 265
}
181
{
materialNr = 2
normalVertexNr = 70 71 56
positionVertexNr = 101 100 115
smoothingGroup = 8197
}
182
{
materialNr = 2
normalVertexNr = 55 53 56
positionVertexNr = 116 118 115
smoothingGroup = 608
}
183
{
materialNr = 2
normalVertexNr = 54 56 53
positionVertexNr = 117 115 118
smoothingGroup = 448
}
184
{
materialNr = 2
normalVertexNr = 52 69 54
positionVertexNr = 119 102 117
smoothingGroup = 22
}
185
{
materialNr = 2
normalVertexNr = 69 70 54
positionVertexNr = 102 101 117
smoothingGroup = 4106
}
186
{
materialNr = 2
normalVertexNr = 51 52 53
positionVertexNr = 120 119 118
smoothingGroup = 7168
}
187
{
materialNr = 2
normalVertexNr = 52 54 53
positionVertexNr = 119 117 118
smoothingGroup = 2192
}
188
{
materialNr = 2
normalVertexNr = 50 68 52
positionVertexNr = 121 103 119
smoothingGroup = 577
}
189
{
materialNr = 2
normalVertexNr = 68 69 52
positionVertexNr = 103 102 119
smoothingGroup = 32773
}
190
{
materialNr = 2
normalVertexNr = 49 50 51
positionVertexNr = 122 121 120
smoothingGroup = 416
}
191
{
materialNr = 2
normalVertexNr = 50 52 51
positionVertexNr = 121 119 120
smoothingGroup = 1568
}
192
{
materialNr = 2
normalVertexNr = 48 67 50
positionVertexNr = 123 104 121
smoothingGroup = 8202
}
193
{
materialNr = 2
normalVertexNr = 67 68 50
positionVertexNr = 104 103 121
smoothingGroup = 16450
}
194
{
materialNr = 2
normalVertexNr = 47 48 49
positionVertexNr = 124 123 122
smoothingGroup = 2128
}
195
{
materialNr = 2
normalVertexNr = 48 50 49
positionVertexNr = 123 121 122
smoothingGroup = 152
}
196
{
materialNr = 2
normalVertexNr = 48 46 67
positionVertexNr = 123 125 104
smoothingGroup = 9217
}
197
{
materialNr = 2
normalVertexNr = 66 67 46
positionVertexNr = 105 104 125
smoothingGroup = 2053
}
198
{
materialNr = 2
normalVertexNr = 47 45 48
positionVertexNr = 124 126 123
smoothingGroup = 2592
}
199
{
materialNr = 2
normalVertexNr = 46 48 45
positionVertexNr = 125 123 126
smoothingGroup = 1792
}
200
{
materialNr = 2
normalVertexNr = 46 44 66
positionVertexNr = 125 127 105
smoothingGroup = 14
}
201
{
materialNr = 2
normalVertexNr = 65 66 44
positionVertexNr = 106 105 127
smoothingGroup = 8706
}
202
{
materialNr = 2
normalVertexNr = 45 43 46
positionVertexNr = 126 128 125
smoothingGroup = 448
}
203
{
materialNr = 2
normalVertexNr = 44 46 43
positionVertexNr = 127 125 128
smoothingGroup = 4232
}
204
{
materialNr = 2
normalVertexNr = 44 42 65
positionVertexNr = 127 129 106
smoothingGroup = 2561
}
205
{
materialNr = 2
normalVertexNr = 64 65 42
positionVertexNr = 107 106 129
smoothingGroup = 4105
}
206
{
materialNr = 2
normalVertexNr = 43 41 44
positionVertexNr = 128 130 127
smoothingGroup = 4144
}
207
{
materialNr = 2
normalVertexNr = 42 44 41
positionVertexNr = 129 127 130
smoothingGroup = 3088
}
208
{
materialNr = 2
normalVertexNr = 40 63 42
positionVertexNr = 131 108 129
smoothingGroup = 70
}
209
{
materialNr = 2
normalVertexNr = 63 64 42
positionVertexNr = 108 107 129
smoothingGroup = 16396
}
210
{
materialNr = 2
normalVertexNr = 39 40 41
positionVertexNr = 132 131 130
smoothingGroup = 896
}
211
{
materialNr = 2
normalVertexNr = 40 42 41
positionVertexNr = 131 129 130
smoothingGroup = 1344
}
212
{
materialNr = 2
normalVertexNr = 60 62 40
positionVertexNr = 111 109 131
smoothingGroup = 32785
}
213
{
materialNr = 2
normalVertexNr = 62 63 40
positionVertexNr = 109 108 131
smoothingGroup = 65539
}
214
{
materialNr = 2
normalVertexNr = 38 60 39
positionVertexNr = 133 111 132
smoothingGroup = 2144
}
215
{
materialNr = 2
normalVertexNr = 60 40 39
positionVertexNr = 111 131 132
smoothingGroup = 176
}
216
{
materialNr = 2
normalVertexNr = 26 37 38
positionVertexNr = 145 134 133
smoothingGroup = 24
}
217
{
materialNr = 2
normalVertexNr = 37 59 38
positionVertexNr = 134 112 133
smoothingGroup = 524
}
218
{
materialNr = 2
normalVertexNr = 37 36 59
positionVertexNr = 134 135 112
smoothingGroup = 5
}
219
{
materialNr = 2
normalVertexNr = 57 59 36
positionVertexNr = 114 112 135
smoothingGroup = 49
}
220
{
materialNr = 2
normalVertexNr = 36 35 57
positionVertexNr = 135 136 114
smoothingGroup = 18
}
221
{
materialNr = 2
normalVertexNr = 55 57 35
positionVertexNr = 116 114 136
smoothingGroup = 134
}
222
{
materialNr = 2
normalVertexNr = 34 53 35
positionVertexNr = 137 118 136
smoothingGroup = 9
}
223
{
materialNr = 2
normalVertexNr = 53 55 35
positionVertexNr = 118 116 136
smoothingGroup = 37
}
224
{
materialNr = 2
normalVertexNr = 33 51 34
positionVertexNr = 138 120 137
smoothingGroup = 18
}
225
{
materialNr = 2
normalVertexNr = 51 53 34
positionVertexNr = 120 118 137
smoothingGroup = 4106
}
226
{
materialNr = 2
normalVertexNr = 33 32 51
positionVertexNr = 138 139 120
smoothingGroup = 17
}
227
{
materialNr = 2
normalVertexNr = 49 51 32
positionVertexNr = 122 120 139
smoothingGroup = 261
}
228
{
materialNr = 2
normalVertexNr = 31 47 32
positionVertexNr = 140 124 139
smoothingGroup = 10
}
229
{
materialNr = 2
normalVertexNr = 47 49 32
positionVertexNr = 124 122 139
smoothingGroup = 70
}
230
{
materialNr = 2
normalVertexNr = 30 45 31
positionVertexNr = 141 126 140
smoothingGroup = 17
}
231
{
materialNr = 2
normalVertexNr = 45 47 31
positionVertexNr = 126 124 140
smoothingGroup = 41
}
232
{
materialNr = 2
normalVertexNr = 30 29 45
positionVertexNr = 141 142 126
smoothingGroup = 20
}
233
{
materialNr = 2
normalVertexNr = 43 45 29
positionVertexNr = 128 126 142
smoothingGroup = 70
}
234
{
materialNr = 2
normalVertexNr = 28 41 29
positionVertexNr = 143 130 142
smoothingGroup = 9
}
235
{
materialNr = 2
normalVertexNr = 41 43 29
positionVertexNr = 130 128 142
smoothingGroup = 35
}
236
{
materialNr = 2
normalVertexNr = 27 39 28
positionVertexNr = 144 132 143
smoothingGroup = 6
}
237
{
materialNr = 2
normalVertexNr = 39 41 28
positionVertexNr = 132 130 143
smoothingGroup = 524
}
238
{
materialNr = 2
normalVertexNr = 26 38 27
positionVertexNr = 145 133 144
smoothingGroup = 17
}
239
{
materialNr = 2
normalVertexNr = 38 39 27
positionVertexNr = 133 132 144
smoothingGroup = 67
}
240
{
materialNr = 0
normalVertexNr = 25 84 85
positionVertexNr = 146 87 86
smoothingGroup = 8391680
}
241
{
materialNr = 0
normalVertexNr = 25 85 83
positionVertexNr = 146 86 88
smoothingGroup = 4196864
}
242
{
materialNr = 0
normalVertexNr = 25 83 82
positionVertexNr = 146 88 89
smoothingGroup = 2097920
}
243
{
materialNr = 0
normalVertexNr = 25 82 81
positionVertexNr = 146 89 90
smoothingGroup = 1048960
}
244
{
materialNr = 0
normalVertexNr = 25 81 80
positionVertexNr = 146 90 91
smoothingGroup = 524480
}
245
{
materialNr = 0
normalVertexNr = 25 80 79
positionVertexNr = 146 91 92
smoothingGroup = 262240
}
246
{
materialNr = 0
normalVertexNr = 25 79 78
positionVertexNr = 146 92 93
smoothingGroup = 131120
}
247
{
materialNr = 0
normalVertexNr = 25 78 77
positionVertexNr = 146 93 94
smoothingGroup = 65560
}
248
{
materialNr = 0
normalVertexNr = 25 77 76
positionVertexNr = 146 94 95
smoothingGroup = 32780
}
249
{
materialNr = 0
normalVertexNr = 25 76 75
positionVertexNr = 146 95 96
smoothingGroup = 16390
}
250
{
materialNr = 0
normalVertexNr = 25 75 74
positionVertexNr = 146 96 97
smoothingGroup = 8195
}
251
{
materialNr = 0
normalVertexNr = 25 74 84
positionVertexNr = 146 97 87
smoothingGroup = 5121
}
252
{
materialNr = 1
normalVertexNr = 24 22 23
positionVertexNr = 147 149 148
smoothingGroup = 234881024
}
253
{
materialNr = 1
normalVertexNr = 24 12 22
positionVertexNr = 147 159 149
smoothingGroup = 50331664
}
254
{
materialNr = 1
normalVertexNr = 24 13 12
positionVertexNr = 147 158 159
smoothingGroup = 12582928
}
255
{
materialNr = 1
normalVertexNr = 24 14 13
positionVertexNr = 147 157 158
smoothingGroup = 7340032
}
256
{
materialNr = 1
normalVertexNr = 24 15 14
positionVertexNr = 147 156 157
smoothingGroup = 1835008
}
257
{
materialNr = 1
normalVertexNr = 24 16 15
positionVertexNr = 147 155 156
smoothingGroup = 458752
}
258
{
materialNr = 1
normalVertexNr = 24 17 16
positionVertexNr = 147 154 155
smoothingGroup = 114688
}
259
{
materialNr = 1
normalVertexNr = 24 18 17
positionVertexNr = 147 153 154
smoothingGroup = 28672
}
260
{
materialNr = 1
normalVertexNr = 24 19 18
positionVertexNr = 147 152 153
smoothingGroup = 7168
}
261
{
materialNr = 1
normalVertexNr = 24 20 19
positionVertexNr = 147 151 152
smoothingGroup = 1792
}
262
{
materialNr = 1
normalVertexNr = 24 21 20
positionVertexNr = 147 150 151
smoothingGroup = 416
}
263
{
materialNr = 1
normalVertexNr = 24 23 21
positionVertexNr = 147 148 150
smoothingGroup = 134217920
}
264
{
materialNr = 1
normalVertexNr = 11 23 0
positionVertexNr = 160 148 171
smoothingGroup = 36
}
265
{
materialNr = 1
normalVertexNr = 0 23 22
positionVertexNr = 171 148 149
smoothingGroup = 67108904
}
266
{
materialNr = 1
normalVertexNr = 11 10 23
positionVertexNr = 160 161 148
smoothingGroup = 5
}
267
{
materialNr = 1
normalVertexNr = 21 23 10
positionVertexNr = 150 148 161
smoothingGroup = 81
}
268
{
materialNr = 1
normalVertexNr = 10 9 21
positionVertexNr = 161 162 150
smoothingGroup = 18
}
269
{
materialNr = 1
normalVertexNr = 20 21 9
positionVertexNr = 151 150 162
smoothingGroup = 42
}
270
{
materialNr = 1
normalVertexNr = 8 19 9
positionVertexNr = 163 152 162
smoothingGroup = 5
}
271
{
materialNr = 1
normalVertexNr = 19 20 9
positionVertexNr = 152 151 162
smoothingGroup = 521
}
272
{
materialNr = 1
normalVertexNr = 7 18 8
positionVertexNr = 164 153 163
smoothingGroup = 18
}
273
{
materialNr = 1
normalVertexNr = 18 19 8
positionVertexNr = 153 152 163
smoothingGroup = 2054
}
274
{
materialNr = 1
normalVertexNr = 6 17 7
positionVertexNr = 165 154 164
smoothingGroup = 5
}
275
{
materialNr = 1
normalVertexNr = 17 18 7
positionVertexNr = 154 153 164
smoothingGroup = 8209
}
276
{
materialNr = 1
normalVertexNr = 6 5 17
positionVertexNr = 165 166 154
smoothingGroup = 6
}
277
{
materialNr = 1
normalVertexNr = 16 17 5
positionVertexNr = 155 154 166
smoothingGroup = 32778
}
278
{
materialNr = 1
normalVertexNr = 5 4 16
positionVertexNr = 166 167 155
smoothingGroup = 9
}
279
{
materialNr = 1
normalVertexNr = 15 16 4
positionVertexNr = 156 155 167
smoothingGroup = 131077
}
280
{
materialNr = 1
normalVertexNr = 4 3 15
positionVertexNr = 167 168 156
smoothingGroup = 6
}
281
{
materialNr = 1
normalVertexNr = 14 15 3
positionVertexNr = 157 156 168
smoothingGroup = 524306
}
282
{
materialNr = 1
normalVertexNr = 3 2 14
positionVertexNr = 168 169 157
smoothingGroup = 17
}
283
{
materialNr = 1
normalVertexNr = 13 14 2
positionVertexNr = 158 157 169
smoothingGroup = 2097161
}
284
{
materialNr = 1
normalVertexNr = 1 12 2
positionVertexNr = 170 159 169
smoothingGroup = 6
}
285
{
materialNr = 1
normalVertexNr = 12 13 2
positionVertexNr = 159 158 169
smoothingGroup = 8388620
}
286
{
materialNr = 1
normalVertexNr = 0 22 1
positionVertexNr = 171 149 170
smoothingGroup = 9
}
287
{
materialNr = 1
normalVertexNr = 22 12 1
positionVertexNr = 149 159 170
smoothingGroup = 16777219
}
}
}